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The unsteady large amplitude linearized motion of a flexible slender wing in inviscid 
incompressible fluid is analysed. This extension to large amplitudes is made by 
assuming small local angles of incidence during motion along a finite amplitude tra- 
jectory. As a specific example, the periodic propulsion produced by a flexible slender 
wing is analysed for large amplitude harmonic motion with small local angles of attack 
and results for the available thrust and efficiency are presented. 

1. Introduction 
The study of the hydromechanics of aquatic-animal propulsion has led to  the 

development of a new branch of unsteady slender-body theory (Lighthill 1970). The 
first attempts were based on the assumption that the flexible elongated fish body is 
performing a predetermined periodic motion whose amplitude is small in relation to  
the body length (Lighthill 1960). An analysis of the swimming of slender fish with 
dorsal fins was reported by Wu ( 1  97 1) as part of a general discussion of aquatic pro- 
pulsion. The influence of fish body thickness and finite fin effects was investigated by 
Newman & Wu (1973), who transformed the flow equations into time-varying curvi- 
linear co-ordinates attached to the fish backbone as suggested by Lighthill (1960). 
A more general analysis of the propulsive forces was carried out by Newman (1973). 

Large amplitude theory has to  be applied in certain cases as the swimming motions 
of most aquatic animals cannot be approximated by small perturbations about a 
straight line. A method for solving this problem was suggested by Lighthill (1971), 
followed by Wu & Yates (1976), who examined the motion of a slender body with 
circular cross-section performing a predetermined motion. 

I n  the present work the unsteady large amplitude motion of a slender lifting surface 
is analysed. The effects of passive chordwise flexibility, determined by the time- 
dependent force balance on the surface, are taken into account here for the first time. 
The analysis is then applied to the calculation of the propulsive thrust forces and the 
efficiency of such thrust production. These parameters are of prime importance in the 
assessment of propulsive units. The present work is a sequel to  a similar analysis of 
large aspect ratio (so-called two-dimensional) airfoils performing oscillatory motions 
(Katz & Weihs 1978, referred to  as I from here on); together these analyses cover 
most of the range of possible oscillating propulsors. 
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FIGURE 1. Scheniatic description of the foil motion and the co-ordinate systems used. 

2. Analysis 
Consider a thin slender fin with aspect ratio smaller than unity moving in a curved 

path through an inviscid incompressible fluid which is otherwise at rest. The fin is 
of constant length but is allowed to deform owing to the action of time-dependent 
hydrodynamic and driving forces and its finite (and assumed given) chordwise flexi- 
bility. A given point P (chosen a t  the front, see figure l) ,  is forced to follow a predeter- 
mined path S. The trajectory S is such that the flow disturbance caused by the foil 
in each cross-section stays small in a sense described below, and no point of the foil 
traverses the wake. In  addition the displacement of the foil h(x, t )  measured in the 
orthogonal x, y, z co-ordinate system, where the x direction is tangential to the path 
in the direction of motion, has to be small relative to the local span (h(x, t ) / b ( x )  < 1). 
These two statements limit the surface downwash velocity w(x, t )  such that: 

w(x,  t ) / l  W)I < 1 

everywhere on the foil, where V ( t )  is the velocity of point P, i.e. the local angle of 
attack of each point along the foil is smaIl. 

There are two major differences between the solution for the situation described 
and the analyses existing in the literature (see introduction). 

(a )  The boundary conditions cannot simply be stated at z* = 0, where the star 
indicates an inertial system (see figure 1) owing to the large excursions allowed be- 
tween the foil path and any Cartesian inertial co-ordinate. 
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( b )  The local deflexions of the chord are calculated from the hydrodynamic forces 
acting on it, which are themselves dependent on the foil shape. 

The method of overcoming the above problems follows that suggested by the 
authors in a recent analysis of large aspect ratio foil motion (I). First, by applying a 
transformation to a time-dependent non-inertial system (x, y, z )  attached to the foil 
(see figure l),  the definition of the boundary conditions is obtained. 

The boundary-value problem can now be set as the solution of Laplace’s equation 
V2$ = 0 for the velocity potential, in the non-inertial frame. The condition of no flow 
through the foil is 

( 1 )  

defining W ,  where w is the time-dependent local angular velocity of the y ,  z plane a t  
given value of x. The disturbance decays far from the scene of motion, so that 

lim V # =  0. (2) 
1, Y, z+m 

The pressures are obtained via Bernoulli’s equation for unsteady incompressible 
flow: 

= (V+oz)--wx-++,, a4 a4 a4 
P ax az (3) 

where second-order disturbances were neglected relative to quantities containing 
larger values, such as V a$/ax. For the steady case, (3) reduces to the familiar result 
p a  - p  = p V +/ax. The lateral pressure field is defined by taking cases of zero side- 
slip only, i.e. the pressure distribution in each cross-flow plane is symmetric about 
y = 0. 

Analysis of the deflexions under the assumption that the foil is linearly elastic so 
that no ‘memory’ effects have to be taken into account leads (I) to the time-dependent 
partial differential equation 

Here 6 and 7 are defined in an additional Cartesian non-inertial co-ordinate system 
originating at the point P, where <is inclined to the x direction a t  the angle of incidence 
a. E(5)  is the chordwise rigidity of the foil defined as the product of the local moment 
of inertia and Young’s modulus, while aL/a< is the variation of the total lift-force 
distribution on the foil, which is obtained by solving the potential flow field around 
the wing. The solution of the above elastic equation is obtained by iteration, neglect- 
ing the mass of the foil as described in I. 

The pressure distribution about a slender, pointed, flexible foil is now found by 
slender-wing methods with some modifications to allow the inclusion of large amplitude 
time-dependent motions. 

The slenderness assumptions introduced can be written as 

2b 
A R = - < l ,  

a a a  
c 

furthermore the path curvature R is 
P = (S”)-1[1+ (X’)2]4, 
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where R/c  9 1 and the displacement h(x,t) relative to the x, y,z co-ordinate system 
is limited (see figure 1) to values h/b < 1. 

The variations of the velocity potential in the x direction are therefore smaller than 
those in the y and x directions (a2q5/ax2 $ 82q5/ay2, a2q5/az2). Thus, by neglecting the 
a2q5/a2x term in Laplace's equations, we retain the flow in the so-called cross-flow 
plane, solving 

azq5/ag + a 2 q 5 p  = o (7)  

for each plane x = constant, while the boundary conditions remain as stated in (1)  
and (2).  

Following Robinson & Laurmann (1956), we define a complex variable h = y + i z  
and complex potential F(A) = q5 + i$, where @ is the stream function. The boundary 
conditions for F ( h )  are 

lim [dF(h)/dh] = 0, 
A+W 

(9) 

where the first term of (8) describes the local downwash due to the instantaneous 
angle of attack, which is the sum of the forced angle of attack and the elastic chord 
distortion. The last two terms describe the unsteady downwash caused by vertical 
displacement and rotation. Here the foil span is not allowed to bend under the action 
of the forces. As a result the downwash W is a function of the chordwise location and 
time only. 

The solution for F(A) in the complex plane is given by Robinson & Laurmann 
(1956, chap. 3.10) as a function of the spanwise co-ordinate 8, defined as 

case = y/b(x). 

F ( h )  can thus be written in the form of an infinite series in 8: 

The velocity components are then 

where the values of the coefficients a, have to be real numbers in order to obtain sym- 
metry of the potential F ( h )  relative to the z axis. The a, are calculated by equating 
the downwash expansion in (12) to its value in the boundary conditions (8) : 

W(x, t) b(x) sin Osin nBd8 

Now that the complete solution in any cross-flow plane has been obtained, it can 
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be applied to  finding the chordwise variations in velocity a$/ax by differentiation 
(as in the steady flow case): 

the time-dependent effect being introduced here through the coefficient a,, which is 
a function of time also. 

The only unknown term left in Bernoulli's equation (3) is a$/&, which is calculated 
in a similar way to  (1  1)-( 14) and is found to be 

a$ a, aa, _ -  - 2 -sinnB 
at n=l at 

The terms including the contribution of the angular velocity OJ are symmetric with 
respect to  the wing profile and do not contribute to the lift distribution, which is 
calculated by spanwise integration of the pressure difference Ap : 

The integral in (1  6) is evaluated by substituting ( 1 4 )  and (15) and is found to be 

In  the steady case this expression reduces to  dL/dx = npVd[a,b(x)]/dx which can be 
further simplified to  obtain the well-known result for a constant angle of attack a, 
where a,  = b(x) Pa: 

5 = npVzadb2(x)/dx. 
ax 

The total lift and couple are then found by integrating (17 )  over the entire chord 
length, which is possible only by numerical means for the general unsteady case. 

3. Performance calculations for a harmonically oscillating slender propulsor 
Here we consider a slender flexible lifting surface of variable span with b(0) = 0 

which is oscillating in heaving and pitching motion with constant amplitudes H and 
ao, respectively. Strictly speaking, b has to be a monotonically increasing function of 
x so that the wake of each section is 'absorbed' in the flow about following sections. 
However, regions where db/dx < 0 can be considered roughly as if b = constant 
(Lighthill 1970; Newman & Wu 1973). The instantaneous angles of attack are small, 
so that assumptions (6) and (7 )  are valid, and during the cycle there is no appreciable 
separation, which can cause a different flow pattern around the propulsor. 

Assuming that the propulsive fin is attached to  a vehicle which is moving in the 
-x* direction with speed U, and that the propulsor is performing a heaving and 
pitching motion with a frequency S2 and phase difference $, the path parameters 
can be written as 

(19 )  

a = a,+a,sin(Rt-$), (20) 

x* = - U,t, S = ( H / c )  sin Qt, 
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FIGURE 2. The infiuence of the maximal angle of attack on (a) the efficiency and ( 5 )  the thrust 
coefficient of a flexible slender fin. 2 b / c  = 0.5, U,/c  = 10 s-l, R = 4. (a = 0.0785), @ = in. 

8, = tan-l [ d ; t * p z * ’ ]  - - , 

w = aept .  (22) 

The instantaneous forces acting in the x and z directions are calculated by integrating 
the pressure difference obtained in (16) and (17): 

The effects of leading-edge suction (Wu 1971) are omitted in (23) as this effect is 
basically much smaller for slender fins, where the leading edges are almost perpen- 
dicular to the direction of motion (dbldx 4 1), so that the component in the thrust 
direction is only a small part of the total suction. This component is further reduced 
by the fact that in large amplitude motion the suction vectors are deflected from the 
direction of advance during most of the cycle, while the thrust is greatly enhanced 
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FIGURE 3. The influence of the frequency on ( a )  the efficiency and ( b )  the thrust coefficient of 
a slender fin. 2blc  = 0.5, U,/c  = 10 s-l, $ = in, a. = 3”. 

(see figures 2 and 3, for example). The omission of the small leading-edge suction is, 
in any case, a conservative assumption as inclusion of this effect will increase the 
thrust, and therefore also the efficiency. 

The thrust coefficient C, and the propulsive efficiency 7, are defined as 

(C F, cos 19, - 8 sin 6,) dt, 

where r is a whole number of periods of oscillation. 

The variation of C, and 7, as a function of the amplitude ratio Hlc ,  the maximum 
angle of attack a, and the frequency is given in figures 2 and 3. In this case the pro- 
pulsor has a rigid chord in order to emphasize the advantages of large amplitude 
propulsion, which is both efficient and provides high propulsive thrust above H / c  > 3. 
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FIGURE 4. The influence of the phase difference $ between heaving and pitching on (a) the 

efficiency and (a) the thrust coefficient. 2b/c = 0-5, U, /c  = 10 s-l, a, = 3", H / c  = 3. 

Results of the type appearing in figures 2 and 3 for a two-dimensional foil of large 
aspect ratio were reported by Chopra (1976) and in I. 

The dashed lines in figure 3 represent regions where the local downwash on the 
wing reaches higher values than are permitted by linear theory (strong leading-edge 
vortices are then expected). This usually occurs after the extremal values of the 
sinusoidal motion and can strongly affect the efficiencies, thus invalidating further 
calculations. 

Figures 2 and 5 show that the thrust and efficiency increase when the amplitude 
H / c  grows. However, if the path curvature is increased (e.g. if the frequency 51 grows 
while H / c  = constant > 2 in figure 3), the efficiency will decrease. This is due to the 
extra effort invested in the foil pitching at the extremes of the sinusoidal motion, 
with no additional thrust component. For the same reason the efficiency will increase 
when the phase difference @ between the heaving and pitching motions is changed as 
indicated in figure 4. The thrust coefficient is highest when the phase difference is 



Unsteady motion of a jlexible propulsor 72 1 

-X 

0.10 

0.05 

-0.05 

-0.10 

-0.15 

0.05 

0.15 

0.10 

o m  

o i ; .  
-0.05 

-0.10 

-0.1 5 

-0.20 

FIGURE 5.  Variation of couples and forces during periodic motion of a flexible fin. __ E/T,,c2 = 
00; --, E/T,,c2 = 131; ----, E/T,,c2 = 52.  2 b / c  = 0.5,  U,/C = 10 s-', fi = 3n7 'k = in, 
H / c  = 3. 

close to 90". This result is reminiscent of large aspect ratio results (I). It has been 
observed in the swimming of fish with both large and small aspect ratio propulsors 
and was also found experimentally by Scherer (1  968), who tested a rectangular pro- 
pulsor of aspect ratio 3. This leads to the conclusion that a phase difference of - 90" 
is probably optimal for all oscillating propulsors. 

The effect of a constant chordwise flexibility distribution E(C) = constant on the 
variation of moments and forces during a propulsive cycle is illustrated in figure 5 .  The 
solid line stands for the performance of a rigid propulsor while the other lines show the 
results for flexible ones. The parameter E / (  Tavcz) describes the normalized deflexion 
of the propulsor chord and T,, is the average thrust of a rigid propulsor performing 
the same periodic motion. It is clear from figure 5 that the flexibility reduces the 
magnitude of the forces but does not appreciably change their time dependence. 

The variation of the thrust coefficient C, and efficiency rp with increasing flexi- 
bility parameter E/(Ta,c2) is displayed in figure 6. There is a considerable gain in 
efficiency up to  E/(T,,c2) 'v 10, while the loss in thrust is small. This phenomenon 
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FIGURE 6. The influence of flexibility on ( a )  the efficiency and (b) the thrust coefficient 

of a slender fin. 2b/c = 0.5, U,/c = 10 s-1, q5 = in, a = 5O, H/c  = 3. 

was realized qualitatively by Picken & Crowe (1974), who compared the performance 
of various flexible swim fins experimentally. For very flexible swim fins the thrust 
is rather small and not, sufficient for propulsive purposes. 
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